

General

Tool steels such as 1.2709 are primarily used for manufacturing tools and molds. They are characterized by a high hardness combined with a high ductility. Their specific mechanical properties allow usage in high-stressed components due to its high wear resistance. The maximum operating temperatures can further reduce wear. An SLM[®]-specific bene t is the layerwise manufacturing, which allows to implement cooling channels into the component.

Material Structure

SLM[®]processed tool steel components exhibit a homogeneous, nearly nonporous texture, with mechanical characteristic values in the range of material specifications. Through subsequent processing such as heat treatment (e.g. precipitation hardening, soft annealing), the components' properties can be adapted to meet specific requirements.

Chemical composition [Mass fraction in %]^[8]

Fe	Ni	Со	Мо	Ti	Al	Mn	Si	Р	S	С	0
Balance	18.00 – 19.00	8.50 – 9.50	4.70 – 5.20	0.50 – 0.80	0.05 – 0.15	0.10	0.10	0.01	0.01	0.03	/

Powder properties

Particle size ^[8]	10 – 45 µm	Particle shape ^[9]	Spherical
Mass density ^[2]	8.0 g/cm ³	Thermal conductivity	14.2 W/(m⋅K)

Layer thicknes	s 30 µr	n ^[3]		As-built		Heat-treat	ed ^[13]	
Build-up rate ^[7]		[cm³/h]		10.0 cm³/h				
Component density [6]		[%]			≈ 99.5 %			
Tensile Test ^[10]				М	SD	М	SD	
Tensile strength	R _m	[MPa]	0°	1190	20	2038	20	
			45°	1184	27	2107	20	
			90°	1213	20	2111	20	
Offset yield strength	R _{p0,2}	[MPa]	0°	999	8	1962	8	
			45°	967	41	2023	15	
			90°	1076	15	1937	17	
Elongation at break	A	[%]	0°	14	5	8	2	
			45°	12	5	4	2	
			90°	10	2	4	2	
Reduction of area	Z	[%]	0°	60	3	31	5	
			45°	56	1	12	0	
			90°	49	3	19	5	
Young's modulus	E	[GPa]	0°	168	4	192	4	
			45°	173	6	201	14	
			90°	181	2	203	4	
Hardness Test ^{11]}	ł		1	M	SD	M	SD	
Vickers hardness		HV10		654	8	608	5	
Roughness measurement ^[12]					As-built Corundum blasted			
				М	SD	M	SD	
Roughness average	Ra	[µI	n]	7	1	6	2	

45

[µm]

5

41

4

Mean roughness depth

Rz

Layer thickness	As-built Heat-treated ^[13]							
Build-up rate ^[7]		[cm³/h]		10.0 cm³/h				
Component density [6]		[%]			≈ 99.5 %			
Tensile Test ^[10]	М	SD	M	SD				
Tensile strength	R _m	[MPa]	0°	1174	20	1940	34	
			45°	1128	42	2040	14	
			90°	1175	24	2021	28	
Offset yield strength	R _{p0,2}	[MPa]	0°	965	25	1789	35	
			45°	890	45	1971	14	
			90°	970	32	1978	23	
Elongation at break	A	[%]	0°	14	5	6	2	
			45°	10	2	5	2	
			90°	12	2	5	2	
Reduction of area	Z	[%]	0°	55	11	28	4	
			45°	56	2	8	1	
			90°	57	5	22	7	
Young's modulus	E	[GPa]	0°	170	8	198	40	
			45°	187	11	199	5	
			90°	182	6	199	2	
Hardness Test ^{11]}					SD	M	SD	
Vickers hardness	342	22	575	10				
Roughness measurement ^[12]					s-built Corundum blast		n blasted	
				М	SD	М	SD	
Roughness average	Ra	[μ ι		9	1	-	-	
Mean roughness depth	Rz	Rz [µm]		67	5	-	-	

Layer thickness 60 µm ^[5]					-built Heat-treated ^[13]				
Build-up rate ^[7]		[cm³/h]			10.0 cm³/h				
Component density ^[6]		[%]			≈ 99.5 %				
Tensile Test ^[10]	М	SD	М	SD					
Tensile strength	R _m	[MPa]	0°	1168	20	1975	20		
			45°	1073	29	2018	21		
			90°	1091	36	1921	20		
Offset yield strength	R _{p0,2}	[MPa]	0°	931	25	1894	2		
			45°	896	59	1944	30		
			90°	943	53	1921	17		
Elongation at break	A	[%]	0°	13	5	6	2		
			45°	11	5	6	2		
			90°	11	5	4	2		
Reduction of area	Z	[%]	0°	49	7	22	1		
			45°	47	4	20	5		
			90°	44	11	13	8		
Young's modulus	E	[GPa]	0°	172	11	190	9		
			45°	167	13	186	10		
			90°	167	10	185	8		
Hardness Test ^{11]}					SD	М	SD		
Vickers hardness		HV10		-	-	552	6		
Roughness measurement ^[12]					As-built Corundum		n blasted		
				М	SD	М	SD		
Roughness average	Ra		m]	10	2	5	2		
Mean roughness depth	Rz	[µı	m]	61	10	35	11		

Material Data Sheet

Tool Steel 1.2709 / A646 / M300^[1]

The properties and mechanical characteristics apply to powder that is tested and sold by SLM Solutions, and that has been processed on SLM Solutions machines using the original SLM Solutions parameters in compliance with the applicable operating instructions (including installation conditions and maintenance). The part properties are determined based on specified procedures. More details about the procedures used by SLM Solutions are available upon request.

The specifications correspond to the most recent knowledge and experience available to us at the time of publication and do not form a sufficient basis for component design on their own. Certain properties of products or parts or the suitability of products or parts for specific applications are not guaranteed. The manufacturer of the products or parts is responsible for the qualified verification of the properties and their suitability for specific applications. The manufacturer of the products or parts is responsible for protecting any third-party proprietary rights as well as existing laws and regulations.

- ^[1] Material according to ASTM A646 Grade Marage 300.
- ^[2] Material density varies within the range of possible chemical composition variations.
- ^[3] Material data file: 1.2709_SLM_MBP3.0_30_CE2_400W_Stripes_V1.2
- ^[4] Material data file: 1.2709_SLM_MBP3.0_50_CE2_400W_Stripes_V1.3
- ^[5] Material data file: 1.2709_SLM_MBP3.0_60_CE2_400W_Stripes_V1.0
- ^[6] Optical density determination by light microscopy.
- ^[7] Theoretical build-up rate for each laser = layer thickness x scan speed x track distance.
- ^[8] With respect to powder material.
- ^[9] According to DIN EN ISO 3252:2001.
- ^[10] Tensile test according to ISO 6892-1:2017 B (DIN 50125:2016 D6x30); testing machine: Zwick Z100; load range: 100 kN; testing speed: 0,008 1/s; testing temperature: room temperature. Test samples were turned before tensile test.
- ^[11] Hardness testing according to DIN EN ISO 6507-1:2018.
- ^[12] Roughness measurement according to DIN EN ISO 4288:1998; $\lambda c = 0.8$ mm.
- ⁽¹³⁾ Heat treatment: aging 500 °C, 6 h; air-cooling.

SLM Solutions Group AG | Estlandring 4 | 23560 Lübeck | Germany

+49 451 4060 - 3000 | info@slm-solutions.com | slm-solutions.com

SLM® is a registered trademark by SLM Solutions Group AG, Germany.